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The cyclic [5]meta-phenyleneacetylene (3) ([5]CMPA) and
its corresponding cyclophane polyones 4 and 5 are synthesized.
3, a ‘‘missing link’’ between [4]CMPA and [6]CMPA, shows a
fairly pronounced emission, indicating a rigid structure, whereas
5 is colorless in contrast to conventional diarylethane-1,2-diones
owing to its conformational mobility and all-s-cis and twisted
dione structure.

There has been considerable interest in phenylene–acety-
lene–macrocycles (PAM) and cyclic polyketones from experi-
mental and theoretical viewpoints.1,2 Although diarylethane-
1,2-diones such as benzil and its derivatives are well known,
only a limited number of cyclic polyketones composed of di-
aryl-1,2-dione units have been reported to date.3 We have recent-
ly reported the synthesis of the macrocyclic hexaketone mono-
hydrate 2 formed via the intramolecular cyclization of the triben-
zo[12]annulenehexaone (1).3b 2 has a very stable hemi-acetal
structure, and its thermal dehydration under reduced pressure
results in its decomposition presumably owing to the instability
of 1. To examine novel properties of cyclic polyketones, we pre-
pared [25](1,3)cyclophanedecaone (5) together with [5]CMPA
(3)4 and the dione 4.

The title compounds 3–5 were synthesized as shown in

Scheme 1.5 The Sonogashira coupling of 6 with 1,3-diiodoben-
zene, followed by desilylation and oxidation with the Dess–
Martin periodinate (DMP) yielded the tetrayne-dialdehyde 7.
The vanadium-mediated pinacol coupling6 of 7 gave a mixture
of the threo-diol 8a and erythro-diol 8b (threo/erythro = 3/
2). The reaction of 8a with 1,10-thiocarbonyldiimidazole (TCDI)
in refluxing toluene, followed by treatment with 1,3-dimethyl-2-
phenyl-1,3,2-diazaphospholidine7 (DMPD) in refluxing benzene
produced (Z)-olefin in 45% overall yield. The reaction of 8b also
yielded (E)-olefin in 45% overall yield. (Z)- and (E)-olefins were
allowed to react successively with Br2 and KOt-Bu to produce 3
in 73 and 83% yields, respectively. To synthesize 4 and 5, a
mixture of 8 was converted into the diketone 4 using the
Swern oxidation. Further oxidation of 4 with RuCl2(PPh3)2
(10mol%)–PhI=O (excess) and RuO2

.2H2O (10mol%)–
PhI=O (excess) produced 5 in 36 and 18% yields, respectively
(Scheme 2).3b

[5]CMPA (3) without substituents is fairly fluorescent in so-
lution (�F ¼ 0:20 in THF) because of its rigid planar structure.8

However, a film cast on a glass plate showed no fluorescence
owing to the �–� stacking interaction in solid state, although
the 1HNMR and UV spectra of 3 showed no concentration or
temperature dependence in CDCl3 or C6D6, reflecting no self-
aggregation in CDCl3 or C6D6. Note that [5]CMPA represents
a missing link between the well-known [4]CMPA (4PAM)9

and [6]CMPA (6PAM).10

Previously, we reported that tribenzo[12]annulene-1,2-di-
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Scheme 2. Synthesis of [5]CMPA (3) and its corresponding
ketones 4 and 5.
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one (9) forms two different conformers in crystals, i.e., yellow
and colorless plates.6a Thus, the UV–vis spectrum and color of
diarylethane-1,2-diones reflect the dihedral angle of vicinal
carbonyl groups.11 [5]CMPA-dione 4 produced yellow plates
from CH2Cl2–(i-Pr)2O–hexane, and its structure was determined
by X-ray analysis.12 As shown in Figure 1, the two carbonyl
groups of 4 are twisted with a dihedral angle of 115.3� and the
benzil chromophore can produce a yellow color.

Interestingly, 5 is colorless in solution and in solid state. As
shown in Figure 2, the longest absorption maximum of 5 at
395 nm (" ¼ 125) is slightly shorter than that of 4 at 402 nm
(" ¼ 140), and its absorption intensity is very weak in spite of
5 having ten carbonyl groups. Generally, the n–�� absorption
of s-cis-diones occurs at shorter wavelength than that of
s-trans-diones,3a and a twisted conformation with a dihedral an-
gle of 90� between two carbonyl groups leads to the smallest
conjugation and shortest absorption maximum with the weakest
absorption coefficient. By considering our observations of 9,3b,13

all-s-cis and/or twisted conformation in 5 can be expected.
The molecular structure of 5 was estimated by PM3 calcula-

tions.14 The calculated preferred conformation has a C1 symme-
try with ten s-cis- and/or twisted carbonyl groups that show
insufficient conjugation between the diketones and aromatic
rings. As reported previously, the conformational change of
pentabenzo[20]annulene with an essential C5 symmetry is very
rapid in solution.15 Similarly, the conformational change of 5
is very rapid in solution owing to the several minimum energy
conformations of 5, and the 1HNMR spectra of 5 in CD2Cl2 at
25 and �80� are almost the same.

In summary, we synthesized 3 (5PAM) which represents the
‘‘missing link’’ of a series of [n]CMPAs (nPAMs) and character-
ized it by comparing its absorption and emission spectra
with those of [4]CPMA and [6]CPMA.8 Furthermore, we also
synthesized the unique [25](1,3)cyclophanedecaone (5) using
our oxidation procedure. The decaone 5 is a colorless, stable
compound that shows a very rapid conformational change in so-
lution. We believe that macrocyclic polycarbonyl compounds
will open up a new perspective on functional and biologically
active materials.
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Figure 1. ORTEP view of 4. Selected bond lengths and angles:
C1–O1 = 1.226(3) Å, C40–O2 = 1.229 Å, C1–C40 = 1.524 Å,
O1–C1–C40 = 116.9(3)�, and O2–C40–C1 = 119.5�.
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Figure 2. UV–vis spectra of the cyclic polyketones 4, 5, and 9
in CH2Cl2 at room temperature.
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